
“Lean and Efficient Software:
Whole-Program Optimization of Executables”

Project Summary Report #4

(Report Period: 4/1/2014 to 6/30/2015)

Date of Publication: June 30, 2015
© GrammaTech, Inc. 2015

 Sponsored by Office of Naval Research (ONR)

Contract No. N00014-14-C-0037
Effective Date of Contract: 06/30/2014

 Technical Monitor: Sukarno Mertoguno (Code: 311)
 Contracting Officer: Casey Ross

Submitted by:

Principal Investigator: Thomas Johnson

531 Esty Street
Ithaca, NY 14850-4201
(607) 273-7340 x. 134

tjohnson@grammatech.com

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

Financial Data Contact:
Krisztina Nagy
T: (607) 273-7340 x.117
F: (607) 273-8752
knagy@grammatech.com

Administrative Contact:
Derek Burrows
T: (607) 273-7340 x.113
F: (607) 273-8752
dburrows@grammatech.com

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
30 JUN 2015 2. REPORT TYPE

3. DATES COVERED
 00-00-2015 to 00-00-2015

4. TITLE AND SUBTITLE
Lean and Efficient Software:Whole-Program Optimization of
Executables

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
GRAMMATECH,,531 Esty Street,,Ithaca,,NY, 14850

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037
Progress Report #4 © GrammaTech, Inc. 2015

2

Data Subject to Restrictions on Cover Page.

1 Financial Summary
Contract Effective Date 06/30/2014
Contract End Date 06/30/2016
Reporting Period 4/1/2014 – 06/30/2015
Total Contract Amount $602,165
Incurred Costs this Period $31,691
Incurred Costs to Date $320,213
Est. Cost to Completion $281,952

2 Project Overview
Background:
Current requirements for critical and embedded infrastructures call for significant increases
in both the performance and the energy efficiency of computer systems. Needed
performance increases cannot be expected to come from Moore’s Law, as the speed of a
single processor core reached a practical limit at ~4GHz; recent performance advances in
microprocessors have come from increasing the number of cores on a single chip. However,
to take advantage of multiple cores, software must be highly parallelizable, which is rarely
the case. Thus, hardware improvements alone will not provide the desired performance
improvements and it is imperative to address software efficiency as well.

Existing software-engineering practices target primarily the productivity of software
developers rather than the efficiency of the resulting software. As a result, modern software
is rarely written entirely from scratch—rather it is assembled from a number of third-party or
“home-grown” components and libraries. These components and libraries are developed to
be generic to facilitate reuse by many different clients. Many components and libraries,
themselves, integrate additional lower-level components and libraries. Many levels of library
interfaces—where some libraries are dynamically linked and some are provided in binary
form only—significantly limit opportunities for whole-program compiler optimization. As a
result, modern software ends up bloated and inefficient. Code bloat slows application
loading, reduces available memory, and makes software less robust and more vulnerable. At
the same time, modular architecture, dynamic loading, and the absence of source code for
commercial third-party components make it hopeless to expect existing tools (compilers and
linkers) to excel at optimizing software at build time.

The opportunity:
Our objective in this project is to substantially improve the performance, size, and robustness
of binary executables by using static and dynamic binary program analysis techniques to
perform whole-program optimization directly on compiled programs: specializing library
subroutines, removing redundant argument checking and interface layers, eliminating dead
code, and improving computational efficiency. In particular, we will apply specialization and
partial evaluation technology, integrating the new technology with the techniques developed
during the previous contract effort. We expect the optimizations to be applied at or

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037
Progress Report #4 © GrammaTech, Inc. 2015

3

Data Subject to Restrictions on Cover Page.

immediately prior to deployment of software, giving our tool an opportunity to tailor the
optimized software to its target platform. Today, machine-code analysis and binary-rewriting
techniques have reached a sufficient maturity level to make whole-program, machine-code
optimization feasible. Thus, we believe there is now a great opportunity to design tools that
will revolutionize the software development industry.

Work items:

We expect to develop algorithms and heuristics to accomplish the goals stated above. We
will embed our work in a prototype tool that will serve as our experimental and testing
platform. Because “Lean and Efficient Software: Whole-Program Optimization of
Executables” is a rather long title, we will refer to the project as Layer Collapsing and the
prototype tool as Laci (for LAyer Collapsing Infrastructure).

The specific work items for the base contract period are listed below:

1. Investigate specialization opportunities. The contractor will design and implement limit
studies that will help focus the search for fruitful applications of partial evaluation and set
goals for attainable improvements.

2. Transfer UW technology. The contractor will transfer program-specialization or partial-
evaluation technology from the University of Wisconsin and integrate it into the
contractor’s tool chain.

3. Improve and extend UW technology. The contractor will improve the robustness and
scalability of the transferred technology, and complete partially implemented
components and functionality.

4. Improve and extend IR construction and rewriting. The contractor will improve
intermediate-representation construction and rewriting infrastructure as needed to
demonstrate functionality on the primary test subjects.

5. Develop and maintain test infrastructure. The contractor will create an extensive suite
of test applications, and will maintain and extend it as necessary. The contractor will also
implement validation and measurement functionality that will enable tracking the
robustness and benefits of program transformations.

6. Investigate security implications. As time permits, the contractor will study the effect of
different instruction-generation mechanisms, such as peephole superoptimization, on
security. As time permits, the contractor will also study whether polyvariant
specialization enables (i) the creation of finer security-relevant models of program
behavior and (ii) more accurate or efficient enforcement of security policies. If earlier
tasks that are essential in completing a functional prototype require more effort, we
propose to shift this task to the option period, with the possible adjustments of lower
effort on either or both of the first two option-period tasks.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037
Progress Report #4 © GrammaTech, Inc. 2015

4

Data Subject to Restrictions on Cover Page.

7. Produce deliverables and attend required meetings. The contractor will produce
technical documentation in the form of reports and a working software prototype. The
contractor will attend meetings requested by the program monitor.

3 Accomplishments during the reporting period
In the previous quarter we had begun transitioning UW’s partial evaluation technology for
use in LACI. This quarter we focused on exploring different options for how to apply the
partial evaluator on a sizeable program. We examined both applying it at the whole-program
level and trying to identify useful subcomponents on which to focus the partial evaluator.

A key challenge here is in constructing a partitioning of the input program into instructions
that can be statically evaluated and those that require dynamic input. At the whole program
level, it is difficult to implement this construction effectively due to the complexity of
tracking dynamic data flow. We currently are achieving only a 3% division for the portion of
the code marked static.

Operating on subcomponents seems a promising alternative, as dynamic data flow can be
locally determined more precisely. We’ve made an initial stab at carving out subcomponents
to operate on independently. This initial approach hasn’t yielded much improvement.
However, we’re aware of a key flaw in the approach and plan to investigate a fix for this flaw
in the next quarter.

A related problem that we’ve encountered has to do with the fact that the partial evaluator
relies on analysis of control dependences in the original program. Our observation is that
control dependence analysis is too conservative, resulting in a division between static and
dynamic instructions being overly pessimistic (labelling instructions that can be evaluated
statically as if they were dynamic). This is particularly problematic for functions that have
early exit paths (e.g. for error checking). In the next quarter, we plan to investigate what
options exist for relaxing the reliance on control dependences.

The following sections provide details on these accomplishments.

3.1 Application of Partial Evaluation at the Whole-Program Level
The partial evaluator involves three high-level steps. This first is to partition the instructions
in the program into two sets: static and dynamic. The second step operates on the static
instructions, performing the evaluation of their operations on a partial state of the program.
The third step is to generate new code in which the static instructions are removed and
replaced with sufficient code to feed in the correct state to the remaining dynamic
instructions when they depend on values computed by the static instructions.

The effectiveness of the partial evaluator for a particular application will therefore be
dependent on how large the static half of the partitioning is. Constructing the perfect
partitioning is generally not possible due to imprecision in our ability to track all possible data

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037
Progress Report #4 © GrammaTech, Inc. 2015

5

Data Subject to Restrictions on Cover Page.

flows (dependence analysis). Thus the partial evaluator errs on the conservative side,
labelling some instructions as dynamic even though they could be statically evaluated.

A second challenge that affects the quality of the partitioning is how well we can identify
sources of dynamic inputs. Again, to be conservative, we rely on an over-approximation of
the actual sources of dynamic data in a program. For example, if a program calls a function
that is external to the application, and the analysis engine has no information on the
behavior of that function, we conservatively assume that the function’s return value (and
objects passed by reference to the function) may contain dynamically provided data.

Taken together, these two issue appear to compound at the whole-program level. We
applied the partitioning to couple mid-sized applications and found that the static
partitioning covered only 3% of the instructions. This is likely too small a margin to gain much
optimization benefit.

3.2 Application of Partial Evaluation on Subcomponents
One of the opportunities we’re hoping LACI can leverage is the interface between client and
library code. Assuming developers often don’t need the full generality present in a given
library, it’s likely that a lot of the library code can be trimmed down with partial evaluation.

With this in mind, we began investigating the possibility of applying the partial evaluator on
subtrees of the call graph. In particular, we looked at function calls in which one or more of
the parameters passed to the function is a constant value. If we can generate a customized
version of the function (and its callees) based on those fixed parameters, then we can
eliminate excess code and computation for that specific calling context.

Our first approach to this was to constrain the partial evaluator’s partitioning
implementation to just the functions that are transitively called from a given call site.
Unfortunately, we hit a snag due to how the partitioning is implemented. The partitioning
leverages CodeSurfer’s dependence analysis, which computes the data and control
relationships between different instructions in the program. Basically, the partitioning is
constructed by performing a forward slice from the dynamic seeds of the program.
Instructions covered by the slice are deemed dynamic. Those not covered by the slice are
static.

Operating at the subcomponent level, we start the slice at the non-constant parameters to a
specific function call. (We must also include other possible sources of dynamic input within
the subcomponent as well.) The instructions not covered by the slice can be deemed static
with respect to the specific calling context that we’re interested in.

Where we ran into trouble, however, is that the default behavior of CodeSurfer’s slicing
operation is to continue following dependence relationships beyond the boundaries of the
subcomponent. If the slice reaches a second call site to the same function with a different
configuration of constant/non-constant parameters, then the slice will be muddied by this

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037
Progress Report #4 © GrammaTech, Inc. 2015

6

Data Subject to Restrictions on Cover Page.

second call-site. As a result, we will again have an overly conservative partitioning of the
code.

CodeSurfer has a couple other slicing modes that we experimented with, however, none of
them quite have the right behavior needed in our situation. Instead, it seems the right
approach is implement a customized slice using CodeSurfer’s API that properly constrains the
slice to the given calling context. We’re planning to attempt this in the next quarter.

3.3 The Problem of Control Dependences
The partial evaluator leverages dependence analysis to construct the partitioning between
static and dynamic instructions. This relies on two notions of dependence:

• A data dependence indicates that a value computed at one instruction is used at
another instruction.

• A control dependence indicates that a control-flow operation performed at one
instruction affects whether or not another instruction is executed.

Obviously, data dependences indicate direct flow of dynamic information through the system
from one computation to the next. Control dependences represent more subtle flow of
information. Consider the following function:

int foo(int input_var)
{
 int x;
 int y;
 if (input_var > 10) {
 x = 1;
 }
 else {
 x = 2;
 }
 y = x;
 return y;
}

In this example, the assignment to y has data dependences on both of the two assignments
to x. However, neither of the assignments to x has any data dependences on any other
instructions - their computation has no inputs. Thus, considering data dependence alone, the
assignment to y does not appear to be dependent on dynamically provided input. Yet clearly
its value does depend on the value of input_var. This is where control dependence comes in.
Both of the assignments to x are control-dependent on the conditional of the if statement.
Relying on both data and control dependences, we can correctly detect that the assignment
to y should, in fact, be classified as a dynamic instruction.

However, leveraging control dependence results in a conservative over approximation of the
set of instructions that should be considered dynamic. In the above example, both
assignments to x would also be labelled dynamic, and thus the partial evaluator would ignore

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037
Progress Report #4 © GrammaTech, Inc. 2015

7

Data Subject to Restrictions on Cover Page.

them. In this case, this wouldn't be too big of a problem. A more problematic case would be
the following kind of idiom:

void bar(int input_var)
{
 if (!is_valid_input(input_var) {
 report_error();
 return;
 }

 /* ... rest of the function ... */
}

Here we have an error check at the beginning of the function to exit early if invalid data is
provided. The "rest of the function" portion of the function is entirely control-dependent on
this error check. Thus the slice performed by the partial evaluator will label this portion of
the function entirely dynamic and miss any opportunities for optimization.

Other work in the literature has explored relaxing the requirement to rely on control
dependence. A key problem that occurs when doing so is creating situations in which the
partial evaluator fails to terminate (or provides an incorrect result). One approach to solving
this is to use a termination analysis to attempt to determine if the partial evaluator will
terminate in a given situation. If so, then the control-dependence can be relaxed. Another
possibility is to pattern-match for specific situations (like the above) and relax the reliance on
control dependence in such situations. We plan to explore these options in the next quarter.

4 Goals for the next reporting period

In the next reporting period we expect to complete the following:

• Investigate techniques for constraining the partial evaluator’s slicing step in order to
construct a more precise partitioning when operating on a subcomponent of a
program.

• Investigate techniques for relaxing the reliance on control dependences when
constructing the static/dynamic partitioning for the partial evaluator.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037
Progress Report #4 © GrammaTech, Inc. 2015

8

Data Subject to Restrictions on Cover Page.

5 Milestones
Interim results on multi-month tasks will be reported in the quarterly progress reports.

6 Issues requiring Government attention
None.

Milestone
Planned
Start date

Planned Delivery/
Completion Date

Actual Delivery/ Completion
Date

Kickoff Mtg 9/4/2014 9/4/2014

Transition Specialization Slicing 7/2014 12/2014 12/2014

Robustness & Reliability of IR &
Rewriting

7/2014 12/2014 12/2014 – statically linked
exes

First Quarterly Report 9/30/2014 11/21/14

Transition Partial Evaluation
and Instruction Synthesis

12/2014 5/2015 In progress

Second Quarterly Report 12/30/2014 2/19/2015

Third Quarterly Report 3/30/2015 5/11/2015

Fourth Quarterly Report 6/30/2015 7/3/2015

Fifth Quarterly Report 9/30/2015

Sixth Quarterly Report 12/30/2015

Seventh Quarterly Report 3/30/2016

Evaluation 4/2016 6/2016

Final Report 6/30/2016

	Project Summary Report #4
	(Report Period: 4/1/2014 to 6/30/2015)
	1 Financial Summary
	2 Project Overview
	3 Accomplishments during the reporting period
	3.1 Application of Partial Evaluation at the Whole-Program Level
	3.2 Application of Partial Evaluation on Subcomponents
	3.3 The Problem of Control Dependences

	4 Goals for the next reporting period
	5 Milestones
	6 Issues requiring Government attention

